Jadi itulah beberapa kumpulan soal SIMAK UI Tes Kemampuan IPA tahun 2017 yang bisa sobat edcent akses kapanpun dan dimanapun. Untuk sobat edcent yang ingin
Pembahasansoal simak ui 2018 matematika dasar kode soal 641. Jual best seller buku simak ui 2016 terjamin jakarta barat. Soal tes simak ui untuk pascasarjana hanya tes tpa ( tes potensi akademik) dan bahasa inggris. Dibawah ini adalah download pdf soal, kunci jawaban, dan pembahasan simak ui tahun , 2018, 2017, 2016, 2015, 2014, 2013
Jawaban(1 dari 3): Hai aku anonim, coba bantu jawab ya Kebetulan aku pernah ngelewatin UTBK sama SIMAK UI sekaligus dan baru kelar dari tahun ini, 2021 #toomuchinformation Sejauh ini, kalau aku perhatiin sama soal UTBK dan SIMAK tahun ini, perbedaannya adalah variasi soal + pelajaran yang bak
KumpulanSoal SIMAK UI dan Pembahasan SIMAK UI segera di Update. soal-soal yang diujikan pada SIMAK UI secara umum tingkat kesulitannya lebih tinggi. Soal SIMAK UI Tahun 2017. Kemampuan Dasar; Kode 341 😊 Download File; Kemampuan IPA; 70+ Soal dan Pembahasan Matematika Dasar SMA Limit Fungsi Trigonometri.
Dibawahini adalah file pdf kumpulan soal kunci jawaban, dan pembahasan simak ui tahun , 2019, dan 2020. Kemampuan ipa simak ui 2019 kode 314. Pembahasan simak ui geografi 2019 kode 731. Pembahasan no 12 / kimia / simakui 2019. PEMBAHASAN SOAL SIMAK UI 2019 Matematika IPA Nomor 4 part4 YouTube .
BelajarPembahasan Soal Matematika Dasar Sbmptn Yuk contoh soal matematika kelas 5 semester 1 kurikulum 2013 contoh soal matematika kelas 5 semester 1 kurikulum 2013 revisi 2017 contoh soal matematika kelas iain purwokerto contoh soal ujian mandiri iain salatiga contoh soal ujian mandiri iain surakarta contoh soal ujian mandiri ipa
JawabanSimak Ui 2017 : Pembahasan Simak Ui 2017 Matematika Ipa Cara Golden - Simak ui s2 abdul karim amin.. Kunci jawaban soal simak ui 2017. Halo pejuang ptn 2020.berikut ada pembahasan soal simak ui 2017 untuk pelajaran sosiologi yaasemoga bisa membantu kamu persiapan buat materi ujian mandiri j. Oleh karena itu, bakteri yang
Kakmakasih ya soal smmptn baratnya aku lolos smmptn 2017 heheh. Buku Soal Dan Pembahasan Simak Ui Matematika Ipa 2009 2019 2020 Kode 227 Shopee Indonesia Latihan Soal Utbk Tps Dan Utbk Tka Tahun 2020 2021 Pendidikan Kewarganegaraan Pendidikan Kewarganegaraan
SoalCPNS Logika . Soal CPNS Logika – Soal CPNS Logika dan analitis ditujukan untuk menguji kemampuan peserta dalam berpikir logis dan analitis ketika menghadapi suatu kasus dalam pekerjaannyaSoal penalaran ini akan selalu muncul di dalam tes Kompetensi Dasar CPNS dan tes Potensi Akademik. Untuk itu saya ingin membagikan beberapa contoh
Soaldan Pembahasan Matematika Dasar Simak UI 2011 ( New Update !!! ) Mei 24, 2020 Soal dan Pembahasan Matematika Dasar Simak UI 2013 ( New Update !!! ) Mei 24, 2020 Soal dan Pembahasan Matematika IPA Simak UI 2017 ( New Update !!! ) Mei 17, 2022
grAuQ7. Simak-UI Seleksi Masuk UI Apa Itu SIMAK UI? Simak-UI Seleksi Masuk UI adalah ujian seleksi masuk Universitas Indonesia dan hanya diselenggarakan oleh Universitas Indonesia bagi calon mahasiswa yang ingin kuliah di Universitas Indonesia. Lokasi Ujian SIMAK UI? Perlu diketahui bahwa Ujian SIMAK UI dilakukan secara serentak di seluruh Indonesia Jakarta, Tangerang, Tangsel, Bekasi, Depok, Bogor, Bandung, Jogjakarta, Surabaya, Padang, Medan, Palembang, Makassar untuk seluruh program pendidikan yang ada di UI, mulai Program Vokasi D3, Sarjana Kelas Paralel, Profesi, Spesialis, Magister dan Doktor. Jadi, bagi calon mahasiswa yang berdomisili di Medan tidak perlu repot-repot ujian ke Jakarta. Siapa Peserta SIMAK UI? SIMAK UI diperuntukkan bagi siswa/i yang berasal SMA Sekolah Menengah Atas atau sederajat yang sudah memiliki ijasah Paket C atau mendapatkan sertifikasi A Level, IB Diploma atau sudah mendapatkan surat penyetaraan dari Departemen Pendidikan Nasional dapat mengikuti SIMAK UI tanpa harus mengikuti UN Ujian Nasional. Materi Ujian SIMAK UI? Materi Ujian SIMAK UI S1 Paralel terdiri dari Kemampuan Dasar KD Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris Kemampuan IPA KA Matematika IPA, Fisika, Kimia, Biologi Kemampuan IPS KS Ekonomi, Sejarah, Geografi, Sosiologi Pilih Prodi IPA maka materi ujiannya mencakup KD dan KA Pilih Prodi IPS maka materi ujiannya mencakup KD dan KS Pilih Prodi IPA dan IPS sekaligus IPC maka materi ujiannya mencakup KD dan KA dan KS Materi Ujian SIMAK S1 Kelas International terdiri dari Pilih Prodi IPA maka materi ujiannya mencakup Mathematics for Natural Science, Biology, Physics, Chemistry Pilih Prodi IPS maka materi ujiannya mencakup Basic Mathematics, Economy, Sociology, Geography, Indonesia and The World. Soal-Soal SIMAK UI? Berikut ini Catatan Matematika membagikan link download file-file Soal SIMAK UI secara lengkap dari tahun ke tahun. Semoga dengan mempelajari soal-soal ini kalian yang ikut seleksi ini dapat lulus/diterima menjadi mahasiswa baru Universitas Indonesia. Tahun Materi SIMAK UI Link Soal SIMAK UI 2009Kemampuan Dasar Download Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2010Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2011Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2012Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2013Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2014Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2015Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2016Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2017Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2018Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2019Kemampuan Dasar Kode 525Download Kemampuan IPA Kode 311Download Kemampuan IPA Kode 323Download Soal SIMAK UI 2020Kemampuan Dasar- Kemampuan IPA- Kemampuan IPS- Baca juga Pembahasan Matematika Dasar SIMAK UI 2018. Pembahasan Matematika IPA SIMAK UI 2018. Pembahasan Matematika Dasar SIMAK UI 2017. Pembahasan Matematika IPA SIMAK UI 2017. Pembahasan Matematika Dasar SIMAK UI 2016. Pembahasan Matematika Dasar SIMAK UI 2015. Pembahasan Matematika Dasar SIMAK UI 2014. Pembahasan Matematika Dasar SIMAK UI 2013. Pembahasan Matematika Dasar SIMAK UI 2012. Pembahasan Matematika IPA SIMAK UI 2012. Pembahasan Matematika Dasar SIMAK UI 2011. Pembahasan Matematika IPA SIMAK UI 2011. Subscribe and Follow Our Channel
Soal dan Pembahasan Matematika IPA Simak UI 2017 New Update !!! Soal dan Pembahasan No 1-5 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 1 Pembahasan Matematika IPA Simak UI Nomor 2 Pembahasan Matematika IPA Simak UI Nomor 3 Pembahasan Matematika IPA Simak UI Nomor 4 Pembahasan Matematika IPA Simak UI Nomor 5 Soal dan Pembahasan No 6-10 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 6 Pembahasan Matematika IPA Simak UI Nomor 7 Pembahasan Matematika IPA Simak UI Nomor 8 Pembahasan Matematika IPA Simak UI Nomor 9 Pembahasan Matematika IPA Simak UI Nomor 10 Soal dan Pembahasan No 11-15 Matematika IPA SIMAK UI 2017 Pembahasan Matematika IPA Simak UI Nomor 11 Pembahasan Matematika IPA Simak UI Nomor 12 Pembahasan Matematika IPA Simak UI Nomor 13 Pembahasan Matematika IPA Simak UI Nomor 14 Pembahasan Matematika IPA Simak UI Nomor 15 You Might Also Like
Berikut ini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Soal ini merupakan salah satu alat tes untuk menyeleksi mahasiswa/i tahun ajaran 2018/2019 yang akan mengecap pendidikan tinggi di universitas ternama di Indonesia yaitu Universitas Indonesia UI. Universitas Indonesia terletak di Jl. Margonda Raya, Beji, Pondok Cina Kota Depok Jawa Barat. Pembahasan SIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia Catatan Matematika yang sifatnya membangun dan mari diskusi dan belajar bersama melalui kolom komentar di akhir postingan ini. Soal SIMAK UI 2018 - Matematika IPA No. 1 Diketahui suku banyak $fx$ dibagi ${{x}^{2}}+x-2$ bersisa $ax+b$ dan dibagi ${{x}^{2}}-4x+3$ bersisa $2bx+a-1$. Jika $f-2=7$, maka ${{a}^{2}}+{{b}^{2}}$ = … A. 12 B. 10 C. 9 D. 8 E. 5Penyelesaian Lihat/Tutup Yang dibagi = Pembagi x Hasil bagi + Sisa Suku banyak $fx$ dibagi $x^2+x-2$ bersisa $ax+b$, maka $fx$ = $x^2+x-2$Hasil + $ax+b$ $fx$ = $x+2x-1$Hasil + $ax+b$ $f-2$ = $-2+2-2-1$Hasil + $-2a+b$ $f-2$ = $-2a+b=7$ … persamaan 1 $f1$ = $1+21-1$Hasil + $a+b$ $f1$ = $a+b$ … persamaan 2 Suku banyak $fx$ dibagi $x^2-4x+3$ bersisa $2bx+a-1$, maka $fx$ = $x^2-4x+3$Hasil + $2bx+a-1$ $fx$ = $x-1x-3$Hasil + $2bx+a-1$ $f1$ = $1-11-3$Hasil + $2b+a-1$ $f1$ = $2b+a-1$ substitusi ke persamaan 2, maka $2b+a-1=a+b$ $b=1$ Substitusi ke persamaan 1, maka $-2a+b=7\Leftrightarrow -2a+1=7\Leftrightarrow a=-3$ ${{a}^{2}}+{{b}^{2}}={{-3}^{2}}+{{1}^{2}}=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 2 Himpunan penyelesaian $16-x^2\le x+4$ adalah … A. {$x\in R-4\le x\le 4$} B. {$x\in R-4\le x\le 3$} C. {$x\in Rx\le -4$ atau $x\ge 4$} D. {$x\in R0\le x\le 3$} E. {$x\in Rx\le -4$ atau $x\ge 3$}Penyelesaian Lihat/Tutup i Untuk $x\ge -4$ maka $16-x^2\le x+4$ $16-x^2\le x+4$ $12-x^2-x\le 0$ $x^2+x-12\ge 0$ $x+4x-3\ge 0$ $x\le -4$ atau $x\ge 3$ yang memenuhi syarat $x\ge -4$ adalah $x\ge 3$. ii Untuk $x\le 4$, maka $16-x^2\le x+4$ $16-x^2\le -x+4$ $20-x^2+x\le 0$ $x^2-x-20\ge 0$ $x-5x+4\ge 0$ $x\le -4$ atau $x\ge 5$ yang memenuhi syarat $x\le 4$ adalah $x\le -4$ Dari i dan ii diperoleh {$x\in Rx\le -4$ atau $x\ge 3$} Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 3 Jika ${{x}_{1}}$ atau ${{x}_{2}}$ memenuhi persamaan $2{{\sin }^{2}}x-\cos x=1$, $0\le x\le \pi $, nilai ${{x}_{1}}+{{x}_{2}}$ adalah … A. $\frac{\pi }{3}$ B. $\frac{2\pi }{3}$ C. $\pi $ D. $\frac{4}{3}\pi $ E. $2\pi $Penyelesaian Lihat/Tutup $2{{\sin }^{2}}x-\cos x=1$ $21-{{\cos }^{2}}x-\cos x=1$ $2{{\cos }^{2}}x+\cos x-1=0$ $2\cos x-1\cos x+1=0$ $\cos x=\frac{1}{2}\Rightarrow {{x}_{1}}={{60}^{o}}$ atau $\cos x=-1\Leftrightarrow {{x}_{2}}={{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{60}^{o}}+{{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{240}^{o}}=\frac{{{240}^{o}}}{{{180}^{o}}}\pi =\frac{4}{3}\pi $ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 4 Jika $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$, nilai $a+b$ untuk $a$ dan $b$ bilangan bulat positif adalah … A. -4 B. -2 C. 0 D. 2 E. 4Penyelesaian Lihat/Tutup $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ $\underset{x\to -3}{\mathop{\lim }}\,\frac{3+ax}{3axb{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ Untuk $x=-3$ maka $3+ax=0\Leftrightarrow 3-3a=0\Leftrightarrow a=1$ Untuk $x=-3$ maka $b{{x}^{3}}+27=0\Leftrightarrow b.{{-3}^{3}}+27=0\Leftrightarrow b=1$ $a+b=1+1=2$ Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 5 Jika $fx$ fungsi kontinu di interval $[1,30]$ dan $\int\limits_{6}^{30}{fxdx}=30$, maka $\int\limits_{1}^{9}{f3y+3dy}$ = … A. 5 B. 10 C. 15 D. 18 E. 27Penyelesaian Lihat/Tutup Misal $\int\limits_{y=1}^{y=9}{f3y+3dy}$ $x=3y+3$ maka $\frac{dx}{dy}=3\Leftrightarrow dy=\frac{1}{3}dx$ $y=1\Rightarrow x=6$ $y=9\Rightarrow x=30$ $\int\limits_{1}^{9}{f3y+3dy}=\int\limits_{6}^{30}{fx.\frac{1}{3}dx}$ $=\frac{1}{3}\int\limits_{6}^{30}{fxdx}$ $=\frac{1}{3}.30=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 6 Pada balok dengan AB = 6, BC = 3, dan CG = 2, titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika 3EM = EH, FN = 2NG, 3DO = 2DA, dan $\alpha$ adalah bidang irisan balok yang melalui M, N, dan O, perbandingan luas bidang $\alpha$ dengan luas permukaan balok adalah … A. $\frac{\sqrt{35}}{36}$ B. $\frac{\sqrt{37}}{36}$ C. $\frac{\sqrt{38}}{36}$ D. $\frac{\sqrt{39}}{36}$ E. $\frac{\sqrt{41}}{36}$Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut Bidang $\alpha$ adalah bidang MNN’O berupa persegipanjang Perhatikan segitiga MM’N siku-siku di titik M, dengan MM’ = 6 cm, M’N = 1 cm, maka $MN=\sqrt{{{6}^{2}}+{{1}^{1}}}=\sqrt{37}$ Luas bidang $\alpha$ adalah $=N'N\times MN$ $=2\sqrt{37}$ Luas permukaan balok adalah $=2 $=2 $\frac{\alpha }{ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 7 Diberikan kubus Sebuah titik P terletak pada rusuk CG sehingga CP PG = 5 2. Jika $\alpha $ adalah sudut terbesar antara rusuk CG dan bidang PBD, maka $\sin \alpha $ = … A. $-\frac{7\sqrt{11}}{33}$ B. $-\frac{7\sqrt{11}}{44}$ C. $\frac{7\sqrt{11}}{33}$ D. $\frac{7\sqrt{11}}{44}$ E. $\frac{7\sqrt{11}}{55}$Penyelesaian Lihat/Tutup Karena CP PG = 5 2 untuk mempermudah perhitungan misalkan panjang rusuk kubus 14 cm, maka CP = 10 cm dan PG = 4 cm. Perhatikan gambar berikut ini! Sudut terbesar antara rusuk CG dan bidang PBD adalah $\alpha $, dengan $\alpha ={{180}^{o}}-\angle CPQ$ $CQ=7\sqrt{2}$, CP = 10, maka $PQ=\sqrt{C{{Q}^{2}}+C{{P}^{2}}}$ $PQ=\sqrt{{{7\sqrt{2}}^{2}}+{{10}^{2}}}$ $PQ=3\sqrt{22}$ $\sin \alpha =\sin {{180}^{o}}-\angle CPQ$ $\sin \alpha =\sin \angle CPQ$ $\sin \alpha =\frac{CQ}{PQ}$ $\sin \alpha =\frac{7\sqrt{2}}{3\sqrt{22}}$ $\sin \alpha =\frac{7}{3\sqrt{11}}\times \frac{\sqrt{11}}{\sqrt{11}}=\frac{7\sqrt{11}}{33}$ Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 8 Jika ${{3}^{x}}+{{5}^{y}}=18$, nilai maksimum ${{3}^{x}}{{.5}^{y}}$ adalah … A. 72 B. 80 C. 81 D. 86 E. 88Penyelesaian Lihat/Tutup ${{3}^{x}}+{{5}^{y}}=18$ Misal ${{3}^{x}}=a$ dan ${{3}^{y}}=b$ , maka $a+b=18\Leftrightarrow a=18-b$ nilai maksimum $ab=...?$ $L= $L=a18-a$ $L=18a-{{a}^{2}}$ Maksimum/minimum, maka $L'=0$ $18-2a=0\Leftrightarrow a=9$ $L=18a-{{a}^{2}}\Leftrightarrow L= Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 9 Diketahui $sx-y=0$ adalah garis singgung sebuah lingkaran yang titik pusatnya di kuadran ketiga dan berjarak 1 satuan ke sumbu-$x$. Jika lingkaran tersebut menyinggung sumbu-$x$ dan titik pusatnya dilalui garis $x=-2$, nilai $3s$ adalah … A. $\frac{1}{6}$ B. $\frac{4}{3}$ C. 3 D. 4 E. 6Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut! Dari gambar diperoleh Lingkaran melalui berpusat di titik -2,-1 dan berjari-jari 1, maka persamaan lingkarannya adalah ${{x+2}^{2}}+{{y+1}^{2}}={{1}^{2}}$, $y=sx$ ${{x+2}^{2}}+{{sx+1}^{2}}=1$ $x^2+4x+4+{{s}^{2}}x^2+2sx+1=1$ ${{s}^{2}}+1x^2+2s+4x+4=0$, syarat menyinggung $D=0$, ${{b}^{2}}-4ac=0$ ${{2s+4}^{2}}-4{{s}^{2}}+14=0$ $4{{s}^{2}}+16s+16-16{{s}^{2}}-16=0$ $-12{{s}^{2}}+16s=0$ $-4s3s-4=0$ $-4s=0$ atau $3s=4$ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 10 Jika kurva $y=a-2x^2+\sqrt{3}1-ax+a-2$ selalu berada di atas sumbu-$x$, bilangan bulat terkecil $a-2$ yang memenuhi adalah … A. 6 B. 7 C. 8 D. 9 E. 10Penyelesaian Lihat/Tutup $y=a-2x^2+\sqrt{3}1-ax+a-2$ maka $A=a-2$, $B=\sqrt{3}1-a$, $C=a-2$, Selalu berada di atas sumbu-X definit positif, maka 1 $A > 0\Leftrightarrow a-2 > 0\Leftrightarrow a>2$ 2 $D 0$, dengan rumus abc maka $a=\frac{10\pm \sqrt{48}}{2}$ $a=\frac{10\pm 4\sqrt{3}}{2}$ $a=5\pm 2\sqrt{3}$ $a 5+2\sqrt{3}$ Dari 1 dan 2 diperoleh batas nilai $a$ adalah $a > 5+2\sqrt{3}\Leftrightarrow a > 5+\sqrt{12}$ $a-2 > 5+\sqrt{12}-2$, karena diminta bilangan bulat terkecil, maka $a-2=5+\sqrt{16}-2=7$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 11 Jika $a+b-c=2$, ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$, dan $ab=\frac{3}{2}{{c}^{2}}$, nilai $c$ adalah … A. 0 B. 1 C. 2 D. 3 E. 6Penyelesaian Lihat/Tutup $a+b-c=2$ $a+b=2+c$ ${{a+b}^{2}}={{2+c}^{2}}$ ${{a}^{2}}+{{b}^{2}}+2ab={{c}^{2}}+4c+4$ ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$ - $2ab+4{{c}^{2}}={{c}^{2}}+4c+2$ $3{{c}^{2}}-4c+2ab-2=0$, diketahui $ab=\frac{3}{2}{{c}^{2}}$ $3{{c}^{2}}-4c+2.\frac{3}{2}{{c}^{2}}-2=0$ $6{{c}^{2}}-4c-2=0$ $3{{c}^{2}}-2c-1=0$ $3c+1c-1=0$ $c=-\frac{1}{3}$ atau $c=1$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 12 Jika ${{S}_{n}}$ adalah jumlah sampai suku ke-n dari barisan geometri, ${{S}_{1}}+{{S}_{6}}=1024$ dan ${{S}_{3}}\times {{S}_{4}}=1023$, maka $\frac{{{S}_{11}}}{{{S}_{8}}}$ = … A. 3 B. 16 C. 32 D. 64 E. 254Penyelesaian Lihat/Tutup Soal Keliru Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Soal SIMAK UI 2018 - Matematika IPA No. 13 Jika vektor $\vec{u}=2,-1,2$ dan $\vec{v}=4,10,-8$, maka … 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$ bila $k=\frac{17}{18}$ 2 sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. 3 $pro{{y}_{{\vec{u}}}}\vec{v}=6$ 4 Jarak antara $\vec{u}$ dan $\vec{v}$ sama dengan $\vec{u}+\vec{v}$Penyelesaian Lihat/Tutup Pernyataan 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$, maka $\vec{u}+k\vec{v}.\vec{u}=0$ $\left \begin{matrix} 2+4k \\ -1+10k \\ 2-8k \\ \end{matrix} \right.\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right=0$ $4+4k+1-10k+4-16k=0$ $-22k=-9\Leftrightarrow k=\frac{9}{22}$, Pernyataan 1 SALAH Pernyataan 2 $\cos u,v=\frac{ $\cos u,v=\frac{\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right.\left \begin{matrix} 4 \\ 10 \\ -8 \\ \end{matrix} \right}{\sqrt{4+1+4}.\sqrt{16+100+64}}$ $\cos u,v=\frac{8-10-16}{ $\cos u,v=\frac{-18}{18\sqrt{5}}$, karena nilainya negatif maka sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. Pernyataan 2 BENAR. Berdasarkan petunjuk C, tanpa mengecek pernyataan 4 maka opsi yang memenuhi adalah C. Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 14 Jika $y=\frac{1}{3}{{x}^{3}}-ax+b$, $a > 0$, dan $a,b\in R$, maka … 1 nilai minimum lokal $y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ 2 nilai maksimum lokal $y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ 3 $y$ stasioner saat $x={{a}^{\frac{1}{2}}}$ 4 naik pada interval $\left[ -\infty ,-{{a}^{\frac{1}{2}}} \right]$Penyelesaian Lihat/Tutup $y=\frac{1}{3}{{x}^{3}}-ax+b$ $\frac{dy}{dx}=x^2-a=0$, karena $a > 0$ maka $x+\sqrt{a}x-\sqrt{a}=0$ $x=-\sqrt{a}$ atau $x=\sqrt{a}$, Dari gambar garis bilangan, maka pernyataan 3 dan 4 BENAR. $y=\frac{1}{3}{{x}^{3}}-ax+b$ $x=-\sqrt{a}\Rightarrow y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai maksimum lokal, pernyataan 1 BENAR. $x=\sqrt{a}\Rightarrow y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai minimum lokal, pernyataan 2 BENAR. Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 15 Jika $\alpha =-\frac{\pi }{12}$, maka … 1 ${{\sin }^{4}}\alpha +{{\cos }^{4}}\alpha =\frac{6}{8}$ 2 ${{\sin }^{6}}\alpha +{{\cos }^{6}}\alpha =\frac{12}{16}$ 3 ${{\cos }^{4}}\alpha =\frac{1}{2}-\frac{1}{4}\sqrt{3}$ 4 ${{\sin }^{4}}\alpha =\frac{7}{16}-\frac{1}{4}\sqrt{3}$Penyelesaian Lihat/Tutup $\alpha =-\frac{\pi }{12}=-{{15}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}-{{30}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}\cos {{30}^{o}}-\cos {{45}^{o}}\sin {{30}^{o}}$ $\sin {{15}^{o}}=\frac{1}{2}\sqrt{2}.\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{2}.\frac{1}{2}$ $\sin {{15}^{o}}=\frac{\sqrt{6}-\sqrt{2}}{4}$ ${{\sin }^{2}}{{15}^{o}}={{\left \frac{\sqrt{6}-\sqrt{2}}{4} \right}^{2}}$ ${{\sin }^{2}}{{15}^{o}}=\frac{2-\sqrt{3}}{4}$ ${{\sin }^{4}}{{15}^{o}}={{\left \frac{2-\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 4 BENAR. Dengan cara yang sama $\cos {{15}^{o}}=\frac{\sqrt{6}+\sqrt{2}}{4}$ ${{\cos }^{2}}{{15}^{o}}=\frac{2+\sqrt{3}}{4}$ ${{\cos }^{4}}{{15}^{o}}={{\left \frac{2+\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 3 SALAH. Dengan logika, berdasarkan petunjuk C maka kita sudah dapat menentukan opsi yang memenuhi adalah D. Jawaban D Subscribe and Follow Our Channel